
Ayaan Khan 400459403 April 10th, 2024

COMPENG 2DX3

ToF Spatial Mapping Device
Technical Report and Datasheet

DEVICE OVERVIEW

Features
• RAPID 3D SPATIAL MAPPING:

Creates a 3D visualization of the
surroundings by scanning the location
with a Time-of-Flight (ToF) sensor.

• INTUITIVE OPERATION: Start and
reset the scanner easily with dedicated
buttons.

• FULL 360° SCANNING: Achieves
precise scanning using a 28BYJ-48
Stepper Motor with 2048-step precision,
controlled in Full Step mode for accurate
positioning and smooth operation,
supported by a stable ULN2003 Driver
ensuring reliable performance.

• ADVANCED DATA CAPTURE:
Utilizes VL53L1X ToF sensor for
distances up to 4 meters, with efficient
I²C communication for seamless data
transfer. Supports 2.6V to 5.5V voltage
input and offers up to 50Hz ranging
frequency for rapid data capture.

• PC CONNECTIVITY: Establishes serial
communication (115200bps baud rate)
with Python interface for data transfer.

• MICROCONTROLLER EFFICIENCY:
MSP432E401Y microcontroller operates
at 60MHz for optimized performance.

General Description
The spatial mapping device is a
microcontroller-based tool designed for 360°
spatial scanning as it traverses an area. It is
intended to be paired with a PC, allowing
users to capture multiple scans and utilize
integrated data mapping software to create a
3D visualization of the scanned environment.

Operation is straightforward: in the software,
specify the port, set the scan interval, and
designate the number of scans. Then, with a
single push button, initiate a scan. The
28BYJ-48 Stepper Motor performs scans in
both clockwise and counter clockwise
directions, optimizing speed.

Out of the box, the device is configured to
take 32 measurements per 360° scan using
the VL53L1X ToF sensor, which precisely
captures distances using high-speed infrared.
The ToF sensor enables distance
measurements up to 4 meters at a ranging
frequency of up to 50Hz.

This device connects to any PC with the
necessary Python libraries—PySerial and
Open3D—installed and requires an available
USB port.

Statement of Originality: As a future member of the engineering profession, the student is
responsible for performing the required work in an honest manner, without plagiarism and
cheating. Submitting this work with my name and student number is a statement and understanding
that this work is our own and adheres to the Academic Integrity Policy of McMaster University
and the Code of Conduct of the Professional Engineers of Ontario.

ToF Spatial Mapping Device

2

FIG 1 BLOCK DIAGRAM

DEVICE CHARACTERISTIC TABLE
Characteristic Description

Microcontroller

MSP432E401Y SimpleLink™ Microcontroller
Baud Rate Bus Speed Memory
115200 bps 60 MHz Flash Memory: 1024 KB

SRAM: 256 KB
EEPROM: 6 KB

Stepper Motor 28BYJ-48 Stepper Motor
Driver for Stepper Motor ULN2003 Driver

- Driver Connections + TERM - TERM IN0 IN1 IN2 IN3
- MCU Connections +5 Supply GND PH0 PH1 PH2 PH3

Sensor VL53L1X Time-of-Flight (ToF) sensor
- Sensor Connections VIN GND SDA SCL
- MCU Connections +3.3 Supply GND PB3 PB2

Sensor Information
Measurement Range Ranging Frequency I²C Bus Speed

4 meters 50 Hz 400 KHz

User Interaction
Single Push-Button (PM0)

Reset Button

LEDs LED PF0 blinks on every measurement
LED PF4 blinks on every full scan

Supported Libraries Requires PySerial and Open3D Python libraries on connected PC
Python Version 3.10.1

TABLE 1

ToF Spatial Mapping Device

3

DETAILED DESCRIPTION
Distance Measurement
With this device, once a scan is initiated via the push button, a 360° rotation begins either clockwise
or counter clockwise, depending on the direction of the previous rotation. At intervals of 11.25°
during rotation, the VL53L1X ToF sensor takes a new distance measurement. This measurement
is obtained by emitting infrared light and calculating the time it takes for the light to bounce back
to the detector from an object. The measured photon travel time is halved (divided by two) because
the ToF sensor only requires the time for the light to reach the object. The resulting value is then
multiplied by the speed of light to determine the distance from the sensor to the object. The
VL53L1X board performs these calculations, and the microcontroller receives the distance value
in millimeters via I²C protocol.
The sensor's SCL signal manages the clock for synchronizing device communication, while the
SDA signal handles data transfer. After receiving data, the microcontroller communicates it to a
connected PC using UART protocol, facilitating data transfer into Python. This serial
communication process involves Python utilizing the pySerial module to access the UART port
connecting the microcontroller and PC, operating at a baud rate of 115200 bps. It's important to
note that the specific UART port on one's system may differ; users can locate the corresponding
UART port via the device manager.
The data transmitted from the microcontroller is in the format "W, (distance), (z coordinate),
(degree)." This is to ensure simplicity of operation, three measurements are being done by the
microcontroller. Before starting the program, the user specifies the interval between
measurements, this value is pre-set at 10 centimeters. Then for each 360° scan, the z coordinate is
increased by that interval. Additionally, for each of the 32 scans in a full rotation, the degree value
is being incremented by 11.25 degrees. For clockwise rotations, the degree value starts at zero and
increases for each measurement, for counter clockwise rotations, the degree value starts at 360 and
decreases for each measurement.
For example, consider the results of two consecutive scans on a hypothetical 30cm radius cylinder,
each initialed by the push button:

[Start of scan]
“W, 300, 0, 0.00”
“W, 300, 0, 11.25”
“W, 300, 0, 22.50”

…
“W, 300, 0, 348.75”

[End of scan]
[Start of scan]

“W, 300, 100, 360”
“W, 300, 100, 348.75”
“W, 300, 100, 337.5”

…
“W, 300, 100, 11.25”

[End of scan]
In this example, the first set of measurements is taken clockwise, with the degree value increasing
for each measurement while the z coordinate remains at zero for the initial scan. The second scan

ToF Spatial Mapping Device

4

is taken counter clockwise, with the degree value decreasing for each measurement and the z
coordinate increased by 10 cm. Both distance measurements are in millimeters.
When reading the port in Python, each incoming line from the microcontroller is checked for a
leading 'W' character, indicating that the data following is a measurement. Lines starting with 'W'
are added to an array until the specified number of scans is reached, at which point the Python
program stops reading data. It then parses each entry of that created array into its three values,
creating a new 2D array, where each item consists of a three item list of [distance, z coordinate,
degree].
Finally, each entry in the 2D array is used to calculate the 3D vector data point [x, y, z] for each
measurement. The x and y values are computed using equations (1) and (2) respectively, with the
distance measurement and degree values from the embedded list. The z value remains unchanged
from the initial reading. The function for this calculation is shown in FIG 2, where "pcoords"
represents the initial 2D array and "coords" represents the final measurement 2D array.

𝑥 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ cos(2𝜋 ∗ 𝑑𝑒𝑔𝑟𝑒𝑒) (1)
𝑦 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ sin(2𝜋 ∗ 𝑑𝑒𝑔𝑟𝑒𝑒)	 (2)

FIG 2 PYTHON SNIPPET CALCULATING POINT VECTOR

Visualization
After obtaining the final vector measurements for each point in the previously created array, there
is an additional array manipulation step required before the data is ready for visualization.
Specifically, every odd set of data needs to be flipped. This adjustment is necessary because every
alternate set of measurements was conducted in the opposite direction, or counter clockwise,
resulting in backward data sets. This configuration leads to a visualization where each point in a
frame connects to a point 32 positions out of alignment, creating the appearance of frames colliding
into each other. The function to flip every odd set is depicted in FIG 3.

FIG 3 PYTHON SNIPPET FIXING DATA SET

Next, the finalized data array can be written to an .xyz file, serving as the storage method for 3D
scans. This allows any set of scans to be re-visualized using the following Python program.

Utilizing the Open3D Python library, the data can be visualized by reading from the .xyz file and
creating a point cloud, transforming each previously computed data vector into a point in space.
This cloud can be visualized, without any connecting lines between points, and still show an

ToF Spatial Mapping Device

5

accurate capture of the scanned environment. The Python snippet for point cloud visualization can
be seen in FIG 4.

FIG 4 POINT CLOUD VISUALIZATION IN PYTHON

For a more detailed and visually appealing model, lines can be drawn between points within a
single frame (defined as the 32 data points in a scan) and between frames. This process is
straightforward in Python, by creating a line array where every line is a vector with the start and
end point [start, end]. A function iterates through the points in a frame to generate line vectors
between adjacent points and connects the first and last points in the frame. It also establishes
connections between corresponding points across multiple frames and incorporates these line
vectors into the array. This new visualization is then output, this snippet is shown in FIG 5.

FIG 5 LINE VISUALIZATION IN PYTHON

ToF Spatial Mapping Device

6

APPLICATION NOTE, INSTRUCTIONS, AND EXPECTED OUTPUT
Application Note
The designated testing area for this device was in the Information Technology Building (ITB) at
McMaster University, specifically on the second floor in section 'D'. The scanning process
involved 17 scans with a z interval of 45 centimeters. Below are images comparing the line
visualization created using Open3D with photographs of the actual area.

FIG 6 VISUALIZATION COMPARISON IMAGES

Instructions
If the device is disassembled, follow these steps:

1. On a breadboard attach a single push button in a pull-up setup, with a 1KΩ resistor
connected to ground and a wire connecting to PM0 on the microcontroller.

2. Carefully attach the ToF sensor to the motor shaft, ensuring a secure connection.
3. Connect the ULN2003 Driver to the microcontroller (MSP432E401Y) as follows:

• + Terminal to +5V Supply
• - Terminal to GND
• IN0 to PH0
• IN1 to PH1
• IN2 to PH2
• IN3 to PH3

4. Connect the VL53L1X ToF sensor to the microcontroller (MSP432E401Y) as follows:
• VIN to +3.3V Supply
• GND to GND
• SDA to PB3
• SCL to PB2

ToF Spatial Mapping Device

7

5. Securely mount the motor base to the side of a box, ensuring the box is comfortable to
hold.

Software Setup:
1. Connect the microcontroller to a PC with KEIL installed using a micro-USB cable.
2. In the main program file, adjust the variable "z_interval" on line 167 to set the desired

distance between scans. This value is preset to 100, corresponding to 10 centimeters.
3. Verify that the correct target, compiler, and debugger settings are selected. For the

components used, use default compiler 6 and XDS-110 for CSMIS-DAP Debugger.
4. Translate, build, and download (in that order) the KEIL program onto the microcontroller.
5. Ensure the correct Python version is installed along with the required libraries (pySerial

and Open3D).
6. Use the following command in Command Prompt to identify the correct port: "python3 -

m serial.tools.list_ports --v"
7. Modify line 10 in the Python program so that "s.port" matches the correct port (defaulted

to 'COM3').
8. Update line 29 in the Python program to set "setsOfScan" to the desired number of scans

(defaulted to 3).
9. Save the Python file.

Operation:
1. In Command Prompt, navigate to where the Python program is held.
2. Run the Python program.
3. When positioned at the desired starting location, press 'ENTER' on the PC to allow the

Python program to begin reading data.
4. Press the 'RESET' button on the microcontroller to ensure all values are reset.
5. Press the push button to start scan, hold still for an optimal scan. Confirm functionality

by observing the onboard LEDs; PF0 will blink with each measurement, and PF4 will be
on while a scan is in progress.

6. Once PF4 is turned off and the motor has stopped running, move to the next location for
scanning (this should be the same displacement as the KEIL program).

7. Press the push button to start another scan.
8. Repeat steps 5-7 until all the desired scans are done. Once the specified number of scans

is completed the Python program will immediately break and display the point cloud
visualization in a new popup window.

9. Closing the point cloud window will pop up a new line visualization window.
10. Done.

Expected Output
There are three desired outputs from the device: a point cloud visualisation, a connected line
visualization, and a saved .xyz file with the scanned data. Below are the same results from the scan
done of the assigned environment, shown in the Application Note.

ToF Spatial Mapping Device

8

FIG 7 LINE VISUALIZATION

Shown above in FIG 7 is another angle of the line visualization made by Open3D. These line
visualizations give a clearer view of the scanned area, compared to a point cloud display.

FIG 8 POINT CLOUD VISUALIZATION

Shown above in FIG 8 is the point cloud visualization of the same area, this is an interesting
visualization that can still give a good sense of the area.

FIG 9 SNIPPET OF .XYZ DATA

ToF Spatial Mapping Device

9

Shown above in FIG 9 is the saved .xyz data of the scanned area. It is important to note that the
same Python program cannot be used to visualize this, requiring a separate program built just for
visualization such that the .xyz file does not get overwritten.

LIMITATIONS
(1) Our system adopts a strategy to ensure precision in trigonometric calculations and decimal

handling by leveraging the computational power of the user's computer and operating system,
rather than processing these tasks directly on the MSP432E401Y microcontroller. This
approach is essential due to the microcontroller's 32-bit floating-point unit, which provides
limited precision compared to personal computers that utilize larger floating-point units (64-
bit or 80-bit) for enhanced accuracy in mathematical operations involving decimal numbers.
By offloading these calculations to the user's system, we optimize accuracy when converting
distance measurements from the ToF sensor into x and y coordinates

(2) Using equation (3) below, we calculate the maximum quantization error to be 0.06103515625

mm. This value is determined by substituting 16 for x, representing the number of resolution
bits for the ADC, and 4000 mm for d, which is the maximum distance that can be measured by
the ToF sensor.

𝑀𝑎𝑥	𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	 = 	 !
"!
		(3)

In this equation:
• d = 4000 mm (maximum distance measured by the ToF sensor)
• x = 16 (resolution bits for the ADC)

Substituting these values into equation (3), we find the maximum quantization error to be
0.061035156252164000 mm

(3) The maximum standard serial communication rate is 128000 bps, however in the program a

standard serial communication rate of 115200 bps was selected. This can be verified by
checking the bits per second shown by the properties manager on Windows.

(4) The communication method between the microcontroller and ToF module was I2C with a

maximum rate of 400KHz.

(5) The primary limitation on system speed was determined to be the ToF sensor and the stepper

motor. Through testing various time delays with the motor and ToF function, it was observed
that using time delays less than 10ms led to operational difficulties. For instance, the ToF
sensor attempted to take measurements at a significantly faster rate than the designated degree
intervals of the stepper motor. As a result, there were instances where the sensor would perform
8 measurements within a 45-degree rotation and then cease measurements for subsequent
intervals.

(6) To configure the system bus speed, change the PLL.h header file in the KEIL project. In the

header file set the PSYDIV variable value to 7, which corresponds to 60 MHz as calculated
with equation (4).

𝐵𝑢𝑠	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	 = #$%&'(
)*+*,-./0

 (4)	

ToF Spatial Mapping Device

10

CIRCUIT SCHEMATIC

FIG 10 CIRCUIT SCHEMATIC

ToF Spatial Mapping Device

11

PROGRAMMING LOGIC FLOWCHARTS

FIG 11 Keil C Program Flowchart

ToF Spatial Mapping Device

12

FIG 12 Python Program Flowchart

ToF Spatial Mapping Device

13

FIG 13 Complete Product Image

ToF Spatial Mapping Device

14

REFRENCES

[1] Texas Instruments, "MSP432E4 SimpleLink™ Microcontrollers Technical Reference
Manual," Literature Number: SLAU723A, Oct. 2017, revised Oct. 2018. [Online].
Available: https://www.ti.com/lit/ug/slau723a/slau723a.pdf. [Accessed: April, 2024].

